Commentary: Burst Firing in a Motion-Sensitive Neural Pathway Correlates with Expansion Properties of Looming Objects That Evoke Avoidance Behaviors
نویسنده
چکیده
What is the neural code? This essential question has been the driving force behind much research in sensory and motor neuroscience, spurring investigations of diverse animals, brain areas, and behaviors. Given that neurons generally transmit information with trains of voltage spikes, what information are these spikes representing, and how can they be interpreted? Do downstream neurons respond to spike rates, counts, times, or some combination of these parameters? How does changing the pattern of spikes change behavior? These are fundamental questions in computational and behavioral neuroscience, and the answers have been as diverse as the neurons themselves. The reflexive response of locusts to looming stimuli is a classic model in neuroethology, with a small number of neurons encoding the expanding stimulus and with spike trains resulting in a robust jump response or wing steering maneuvers. Because the neural circuit is relatively direct, from retina to muscle in only a handful of synapses, it is an excellent candidate for the study of neural coding. In this pathway, the visual expansion of a dark circle on the locust's retina, representing a looming threat, results in a train of spikes in the lobula giant motion detector (LGMD) that signal to a descending interneuron, the descending contralateral motion detector (DCMD) (Gabbiani et al., 1999). The DCMD then stimulates thoracic interneurons and motoneurons to initiate jump or wing-steering responses (Burrows and Fraser Rowell, 1973). In previous work, various parameters of the DCMD spike train, including firing rate, time of peak firing rate, and total spike count, were found to control different aspects of the jump response (Fotowat et al., 2011), indicating that a train of spikes from a single neuron can modulate responses in multiple ways. This multiplexing suggests that the DCMD spike train is a powerful means of motor control. Previous analysis of the DCMD response to a looming stimulus found that spike rate increases as the stimulus expands, peaking within 200 ms of the predicted collision and peaking sooner when the stimulus is moving faster. In a new study, McMillan and Gray analyzed DCMD spike trains looking for evidence of neural bursting, which they defined using specific statistics, most importantly an inter-spike interval of <8 ms. They found that the DCMD neuron does indeed burst, and most of these bursts occur when the looming stimulus becomes imminent (>200 ms
منابع مشابه
Burst Firing in a Motion-Sensitive Neural Pathway Correlates with Expansion Properties of Looming Objects that Evoke Avoidance Behaviors
The locust visual system contains a well-defined motion-sensitive pathway that transfers visual input to motor centers involved in predator evasion and collision avoidance. One interneuron in this pathway, the descending contralateral movement detector (DCMD), is typically described as using rate coding; edge expansion of approaching objects causes an increased rate of neuronal firing that peak...
متن کاملA looming-sensitive pathway responds to changes in the trajectory of object motion.
Two identified locust neurons, the lobula giant movement detector (LGMD) and its postsynaptic partner, the descending contralateral movement detector (DCMD), constitute one motion-sensitive pathway in the visual system that responds preferentially to objects that approach on a direct collision course and are implicated in collision-avoidance behavior. Previously described responses to the appro...
متن کاملBackground visual motion affects responses of an insect motion‐sensitive neuron to objects deviating from a collision course
Stimulus complexity affects the response of looming sensitive neurons in a variety of animal taxa. The Lobula Giant Movement Detector/Descending Contralateral Movement Detector (LGMD/DCMD) pathway is well-characterized in the locust visual system. It responds to simple objects approaching on a direct collision course (i.e., looming) as well as complex motion defined by changes in stimulus veloc...
متن کاملNeuronal responses to looming objects in the superior colliculus of the cat.
The superior colliculus (SC) in the mammalian mesencephalon is involved in avoidance or escape behaviors, but little is known about the response properties of collicular neurons to an object approaching on a collision course towards the animal. The present study identified two classes of looming-sensitive neurons, rho and eta cells, in the SC of the cat, but did not find any tau cell, which has...
متن کاملSpatiotemporal stimulus properties modulate responses to trajectory changes in a locust looming-sensitive pathway.
The lobula giant movement detector (LGMD) and descending contralateral movement detector (DCMD) constitute one motion-sensitive pathway in the locust visual system that is implicated in collision-avoidance behaviors. While this pathway is thought to respond preferentially to objects approaching on a direct collision course, emerging studies suggest the firing rate is able to monitor more compli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2015